# Substitution Reactions at Palladium(II) Complexes Producing Dimeric Species: Stability Constants Determination for Simultaneous Equilibria

AMBROGIO GIACOMELLI\*, FRANCESCO MALATESTA and MARIA CARLA SPINETTI

Istituto di Chimica Analitica ed Elettrochimica dell'Università di Pisa, 56100 Pisa, Italy

Received January 14, 1981

Substitution equilibria in Pd(dien)-like aquocomplexes are parallel to dimerization equilibria of the starting monomeric species. Accurate potentiometric measurements of the hydrogen ion concentration lead to the simultaneous determination of the stability constants of both kinds of equilibria: Pd(dien)H<sub>2</sub>O<sup>2+</sup> +  $X \approx Pd(dien)X^{+} + H_2O$ , and 2 Pd(dien)H<sub>2</sub>O<sup>2+</sup> +  $X \approx [Pd(dien)]_2 X^{3+} + 2H_2O$ .

For the monomeric complexes, the following relative stability series was ascertained:  $X^- = C\Gamma < Br^- < \Gamma < SCN^- < OH^-$ . The bridging ligand affects the relative stability of the dimeric species in the order:  $X^- = \Gamma \ll OH^- < SCN^-$ .

# Introduction

The coordination of a ligand X to a metal center is the fundamental step for achieving a change in its usual reactivity. This step of the so-called metalpromoted molecular activation may proceed either through an addition of X to a vacant coordination site or, more often, by a ligand substitution reaction. Suitable models for studying the substitution of a single ligand around the metal are the Pd(dien)-like complexes:

$$\begin{bmatrix} \begin{pmatrix} N \\ N \\ N \\ N \end{bmatrix}^{n}$$

where n = 2 or 1 according to whether X is a molecule (H<sub>2</sub>O) or a monovalent anion (CI<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>, SCN<sup>-</sup>, OH<sup>-</sup>), and were  $\widehat{NNN}$  is either diethylenetriamine (dien), or 1,1,7,7 tetraethyldiethylenetriamine (Et<sub>4</sub>dien), or 1,1,4,7,7 pentamethyldiethylenetriamine (Me<sub>5</sub>dien). For simplicity, we would indicate such complexes as MX, disregarding the charges; and, in particular, (M1)X, (M2)X and (M3)X for Pd(dien)X<sup>n+</sup>, Pd(Et<sub>4</sub>dien)X<sup>n+</sup> and Pd(Me<sub>5</sub>dien)X<sup>n+</sup> respectively. The main characteristics of these model compounds are: i) they contain Pd(II), a very labile metal center active in catalytic processes [1], ii) a single coordination site is potentially available on the metal for substitution reactions, iii) the substitution reactions can be carried out in aqueous solution.

In spite of the simplicity of the model, we found that the substitution of the ligand (or the release of  $H^*$  from MOH<sub>2</sub>) is parallel to a dimerization of the starting monomeric unit. This finding, observed under dynamic conditions in solution, is rather important because of the dependence of the molecular activation on the nuclearity of the metallic systems. While being very well identified as concerns their structure in the solid state, the genesis and the presence of polynuclear species in solution is a vexing question. The stability constants concerning a formation of polynuclear complexes are, in particular, scarcely known and difficult to measure.

Concerning this point, we suggest an experimental method suitable for getting equilibrium constants for simultaneous reactions, such as substitution and dimerization. It consists of adding, as in titrations, increasing amounts of the ligand to the solutions containing both MOH<sub>2</sub> and MOH, and in measuring the equilibrium concentrations of the hydrogen ion by suitably standardized glass electrodes. While it recalls the method of A. W. Thomas [2] and the subsequent improvements of Bjerrum [3], we would emphasize that, in the present case, the pH control is maintained by the conjugated system  $MOH_2$ -MOH, instead of by hydrolysis of the ligand. The acid—base equilibria of  $MOH_2$  are, of course, the first subject of attention.

As for the equilibrium constants we stated, for simplicity, to concern ourselves only with molar stoicheiometric quotients at fixed ionic strength and practically constant composition.

<sup>\*</sup>Author to whom correspondence should be addressed.

#### Experimental,

The equilibria were studied at 25 ± 0.02 °C and at ionic strength 0.5  $\pm$  0.02 M, generally in NaClO<sub>4</sub> solutions. Some measurements (and the corresponding standardisations) were repeated in NaNO<sub>3</sub> solutions, as the perchlorates of (M2)SCN, (M2)I, (M3)-SCN, (M3)I, and of (M2)Br are only slightly soluble. The supporting electrolyte (NaClO<sub>4</sub> or NaNO<sub>3</sub>) was always in great excess as compared with X and with the complexes, in order to avoid any appreciable variation of the composition and the ionic strength, which could affect both the activity coefficients and the junction potentials. All solutions were prepared using conductivity-grade water. The aquocomplexes were obtained from the corresponding halide complexes (the chlorides for (M1)OH<sub>2</sub> and (M2)OH<sub>2</sub>, the iodide for (M3)OH<sub>2</sub>), and from AgClO<sub>4</sub> in the ratio 2:1. The endpoint for Ag<sup>+</sup> was potentiometrically detected, this being a useful test to prove the purity of the halide complexes. After filtering, the solutions were diluted by means of NaClO<sub>4</sub> (or NaNO<sub>3</sub>) solutions up to a concentration of 5  $\times$  10<sup>-3</sup>-3  $\times$  10<sup>-2</sup> M, and were titrated with both NaOH and NaX 0.5 M solutions. Nitrogen was used to prevent pollution from  $CO_2$ .

The pH values were measured by using a Delta acque 107 potentiometer. The reference electrode (Ag, AgCl/NaCl 0.5 *M*) was connected to the test solution through a 0.5 *M* NaClO<sub>4</sub> (or NaNO<sub>3</sub>) salt bridge, in order to minimize the Cl<sup>-</sup> diffusion which seriously interferes with the measurements. The glass electrode was standardized in terms of p[H] (*i.e.*,  $-\log_{10}[H^*]$ ) using known amounts of HClO<sub>4</sub> in NaClO<sub>4</sub> (or NaNO<sub>3</sub>) solution at I = 0.5 M [4]. When titrated with NaOH, the perchloric acid was directly added to the test solution.

The OH<sup>-</sup> molar concentrations were correlated to p[H] by assuming  $1.9 \times 10^{-14}$  and  $2.1 \times 10^{-14}$ as the stoicheiometric molar K<sub>w</sub> in 0.5 *M* NaClO<sub>4</sub> and 0.5 *M* NaNO<sub>3</sub> respectively<sup>\*</sup>, according to some literature data [5, 6]. A rather high relative error in [OH<sup>-</sup>] is, of course, possible, but even 10% or 20% errors do not appreciably change the results when pH values range below 9 (as it usually was).



Fig. 1. Upper section, experimental  $\Delta p[H]$  as a function of the titrated fraction  $\alpha_b$ , for three titrations of (M1)OH<sub>2</sub> in NaClO<sub>4</sub> solution. Starting concentrations of (M1)OH<sub>2</sub>: 9.96 × 10<sup>-3</sup> M ( $\bigtriangledown$ ), 1.77<sub>5</sub> × 10<sup>-2</sup> M ( $\circlearrowright$ ), 3.06<sub>5</sub> × 10<sup>-2</sup> M ( $\bullet$ ) (the corresponding p[H]<sub>0.5</sub> were 7.58<sub>8</sub>, 7.58<sub>5</sub> and 7.59<sub>3</sub> respectively). Full lines: theoretical  $\Delta p[H]$  for K<sub>D</sub> = 156. Lower section: K<sub>D</sub> values calculated from each experimental p[H] in the same titrations.

The halide complexes and  $SCN^-$  complexes have been identified by elemental and IR analysis. According to what is already known [7], (M2)OH<sub>2</sub> and (M3)OH<sub>2</sub> give, with SCN<sup>-</sup>, precipitates which correspond with isothiocyanate complexes, while the isomer thiocyanate is obtained from (M1)OH<sub>2</sub>.

The <sup>13</sup>C NMR spectra were recorded using a Varian XL100 instrument.

#### Method and Results

#### The Titrations with NaOH

The titration curves of the  $MOH_2$  complexes with NaOH resemble, at first sight, those of the usual weak monoprotic acids. The half-titration p[H] values, p[H]<sub>0.5</sub>, are independent (within ±0.006) of the concentration in the experimental range. They satisfactorily agree with the pK<sub>a</sub> quoted in the literature (7.1 [8] or 7.5 [9] for (M1)OH<sub>2</sub>, 7.5 [10] for (M2)OH<sub>2</sub>), considering the different experimental conditions. However, the titration curves have a greater slope than one expects, as though the value of pK<sub>a</sub> were to increase during the titration. This behaviour is particularly evident for (M1)OH<sub>2</sub>, but can also be observed for (M2)OH<sub>2</sub> and (M3)-OH<sub>2</sub>. In Fig. 1 we have reported the differences,  $\Delta p$ [H], between experimental p[H] and p[H] values

<sup>\*</sup>The  $1.9 \times 10^{-14}$  value was evaluated on the grounds of: i) the K<sub>w</sub> values in KCl and NaCl solutions [5], which are near each other in a wide range of I; ii) the mean activity coefficients of NaClO<sub>4</sub>, which are, in turn, very near to those of KCl and NaCl [5, 6]. Very similar ion-ion and ionsolvent interactions occur, reasonably, in NaClO<sub>4</sub>, NaCl and KCl solutions, and therefore the stoicheiometric K<sub>w</sub> value must be very similar. The mean activity coefficients in NaNO<sub>3</sub> solutions are appreciably lower than the others [5] and a K<sub>w</sub> value of  $2.1 \times 10^{-14}$  is evaluated, if one accounts for a corresponding decrease in the H<sup>+</sup> and OH<sup>-</sup> activity coefficients.

|                 | M(1)OH <sub>2</sub> | (M2)OH <sub>2</sub> | (M3)OH <sub>2</sub> |
|-----------------|---------------------|---------------------|---------------------|
| pK <sub>a</sub> | 7.589 ± 0.006 (a)   | 7.688 ± 0.007 (a)   | 7.293 ± 0.006 (a)   |
|                 | 7.543 ± 0.006 (b)   | 7.677 ± 0.007 (b)   | 7.241 ± 0.006 (b)   |
|                 | $156 \pm 8$ (a)     | 8 ± 2 (a)           | $12 \pm 3$ (a)      |
|                 | $125 \pm 5$ (b)     | 3 ± 1 (b)           | $5 \pm 1$ (b)       |

TABLE I.  $pK_a$  and  $K_D$  Values of (M1)OH<sub>2</sub>, (M2)OH<sub>2</sub> and (M3)OH<sub>2</sub> at 25 °C and I = 0.5 *M*, in NaClO<sub>4</sub> (a) and NaNO<sub>3</sub> (b).

one calculates for a monoprotic acid having the same  $p[H]_{0.5}$  and the same concentration. Such differences are an approximately linear, S-shaped function of the titrated fraction ( $\alpha_b$ ), and they increase as the concentration increases. In our opinion, the only reasonable explanation is the occurrence of a further equilibrium, MOH<sub>2</sub> + MOH  $\rightleftharpoons M_2OH + H_2O$ , according to the suggestions of Martin and Lim [9]. On the grounds of this equilibrium, the value of  $p[H]_{0.5}$  does not change. The slope of the  $\Delta p[H]$  curves must depend on the concentration and the  $K_D$  value (where  $K_D = [M_2OH] - [MOH_2]^{-1}[MOH]^{-1}$ ), but it must be practically independent of  $pK_a$ .

The  $K_D$  value is easily calculated from each experimental p[H] (except very near to the halftitration or to the equivalent points) after assuming  $pK_a = p[H]_{0.5}$  (Fig. 1, lower section). It can also be sought after by attempts, so as to reproduce the experimental  $\Delta p[H]$  slopes. A  $K_D$  value of  $156 \pm 8 M^{-1}$ , together with a  $pK_a$  value of  $7.589 \pm 0.006$ , allows the reproduction of the (M1)OH<sub>2</sub> titration curves in NaClO<sub>4</sub> solutions (Fig. 1, upper section). Errors in concentrations and in equivalent points are the main reasons of the deviations observed; they are also responsible for the small discrepancies in  $p[H]_{0.5}$ (Gran's method [11] was used to identify the equivalent points, but it was rather unsatisfactory, due perhaps to the dimerization reaction).

The  $pK_a$  and  $K_D$  values of (M1)OH<sub>2</sub>, (M2)OH<sub>2</sub> and (M3)OH<sub>2</sub> in both NaClO<sub>4</sub> and NaNO<sub>3</sub> solutions are reported in Table I. In the dimerization equilibria, we assume that the M<sub>2</sub>OH species contains a metalhydroxide-metal bridge. For (M2)OH<sub>2</sub> and (M3)-OH<sub>2</sub> the K<sub>D</sub> values are considerably less than for (M1)OH<sub>2</sub>, in agreement with the greater steric hindrance.

Another, very different justification had been suggested for the anomalous curves of (M1)OH<sub>2</sub>, *i.e.*, *it* would exist, in the aqueous solutions, as a dimeric, diprotic (MOH<sub>2</sub>)<sub>2</sub> (instead of monomeric MOH<sub>2</sub>), having pK<sub>1</sub> and pK<sub>2</sub> near each other [12]. However, this does not explain why the  $\Delta p$ [H] also depends on the concentration (pK<sub>1</sub> and pK<sub>2</sub> should be changed for each concentration). As further evidence, two (very sharp) peaks are observed in the <sup>13</sup>C NMR spectra of aqueous concentrated solutions of (M1)-  $OH_2(CIO_4)_2$ , at 106 and 113 ppm, and this only agrees with the monomeric structure. When two diethylenetriamines connect two palladium atoms, as in the hypothetic dimeric structure (MOH<sub>2</sub>)<sub>2</sub>, four non equivalent carbon atoms should result, instead of two.

As for (M1)OH<sub>2</sub>, some studies were also made through UV spectra at different pH. An apparent isosbestic point occurs at about 292-295 nm, however it is rather undefined and may agree with the presence of the three species (M1)OH<sub>2</sub>, (M1)OH and (M1)<sub>2</sub>OH. The molar absorptivities of (M1)-OH<sub>2</sub> and (M1)OH are, respectively,  $\epsilon_1 = 523 \pm 2$ and  $\epsilon_2 = 410 \pm 2$  at 315 nm, and an approximate  $pK_a$  value, 7.64 ± 0.09, may be evaluated disregarding the (M1)<sub>2</sub>OH dimer. It has not been possible to confirm, in this way, the (M1)<sub>2</sub>OH dimer, may be because of the insufficient accuracy of the measurements, or because its extinction coefficient,  $\epsilon_3$ , is near the sum  $\epsilon_1 + \epsilon_2$ . As a matter of fact, the experimental absorbances are slightly better interpreted if one assumes that (M1)<sub>2</sub>OH is present. A molar absorptivitiy,  $\epsilon_3 \cong 960$ , may be evaluated for (M1)<sub>2</sub>OH by least squares methods, using the potentiometric  $pK_a$  and  $K_D$  values.

## The Titrations with NaX

When MOH<sub>2</sub> solutions are titrated with NaX, an increasing amount of MOH<sub>2</sub> becomes the non-acid MX species and the pH increases. The concentrations of MOH<sub>2</sub>, MOH and M<sub>2</sub>OH are correlated to the H<sup>+</sup> concentration and are easily calculated once the pK<sub>a</sub> and K<sub>D</sub> are known. [MX] and [X] are then calculated by subtraction, knowing the analytical concentration of X(C<sub>X</sub>) and of the complexes (C<sub>M</sub>). One can therefore calculate the stability quotient, K<sub>f</sub> = [MX] [MOH]<sup>-1</sup>[X]<sup>-1</sup>, from each experimental p[H] value.

A known NaOH amount was always added to the solutions before titrating with NaX (the analytical concentration of NaOH,  $C_b$ , was usually set at 10–20% of  $C_M$ ). That is a rather important device since, in this way, MOH does not vanish during the titration. Reliable  $K_f$  values are only obtained at non vanishing [X], since [X] is to be calculated by subtraction; in correspondence, [MOH<sub>2</sub>] is usually very slight. The added NaOH allows to calculate

| x                 | K <sub>f</sub> /M <sup>-1</sup>   |                                   |                                   |  |
|-------------------|-----------------------------------|-----------------------------------|-----------------------------------|--|
|                   | (M1)OH <sub>2</sub>               | (M2)OH <sub>2</sub>               | (M3)OH <sub>2</sub>               |  |
| CI <sup>-</sup>   | $[5.3 \pm 0.1] \times 10^2$ (a)   | $[1.2 \pm 0.1] \times 10^3$ (a)   | $[1.4 \pm 0.1] \times 10^3$ (a)   |  |
|                   | $[5.10 \pm 0.05] \times 10^2$ (b) | $[1.10 \pm 0.07] \times 10^3$ (b) | $[1.34 \pm 0.08] \times 10^3$ (b) |  |
| Br                | $[2.3 \pm 0.1] \times 10^3$ (a)   | $[1.76 \pm 0.08] \times 10^3$ (b) | $[1.8 \pm 0.1] \times 10^3$ (a)   |  |
|                   |                                   |                                   | $[1.94 \pm 0.03] \times 10^3$ (b) |  |
| ſ                 | $[7.3 \pm 0.3] \times 10^4$ (a)   | $[7.0 \pm 0.5] \times 10^3$ (b)   | $[7.6 \pm 0.4] \times 10^3$ (b)   |  |
| SCN <sup></sup>   | $[5.5 \pm 0.2] \times 10^5$ (a)   | $[1.2 \pm 0.1] \times 10^5$ (b)   | $[1.4 \pm 0.1] \times 10^5$ (b)   |  |
|                   | $K_{DX}/M^{-1}$                   |                                   |                                   |  |
| Ml⁺               | $5 \pm 3$ (a)                     |                                   |                                   |  |
| MSCN <sup>+</sup> | 650 ± 20 (a)                      | 50 (b)                            | 64 ± 5 (b)                        |  |
|                   |                                   |                                   |                                   |  |

TABLE II. K<sub>f</sub> and K<sub>DX</sub> Values of (M1)OH<sub>2</sub>, (M2)OH<sub>2</sub> and (M3)OH<sub>2</sub> at 25  $^{\circ}$ C and I = 0.5 M in NaClO<sub>4</sub> (a) and NaNO<sub>3</sub> (b).



Fig. 2. Circles:  $K_f$  values from a titration of (M1)OH<sub>2</sub> with 0.5 *M* Cl in NaNO<sub>3</sub> solution. Lines: systematic deviations which arise from errors:  $\pm 1\%$  in C<sub>M</sub> (full lines);  $\pm 2\%$  in C<sub>b</sub>, or  $\pm 0.01$  in p[H], or  $\pm 0.01$  in pK<sub>a</sub> (dashed lines);  $\pm 1\%$  in C<sub>X</sub> (dotted lines);  $\pm 20\%$  in K<sub>D</sub> (dash-and-dot lines).

 $[MOH_2]$  as a ratio, with a practically constant relative error, from [MOH],  $[H^*]$  and  $K_a^*$ .

As further advantages, the addition of NaOH improves the sensitivity ( $[H^*]$  becomes a practically linear function of  $[MOH_2]$  instead of  $[MOH_2]^{1/2}$ ),

increases the pH range and lessens the effects of  $CO_2$  or free amine traces. If, instead, one titrates a solution of  $MOH_2$  alone, the pH shifts towards that of the solvent, and becomes too dependent on the impurities.

The K<sub>f</sub> values in Table II are an average of the values obtained at various  $\alpha_{\rm X} = C_{\rm X}/C_{\rm M}$  ratios, in several titrations. The titrations were generally carried on to a ratio 3-10. Depending on  $\alpha_{\rm X}$ , the K<sub>f</sub> are differently affected by errors in p[H], in reagent amounts, in pKa, KD and Kw. However, a rather incorrect  $K_w$  value does not influence the results in the case of weak ligands (Cl<sup>-</sup>, Br<sup>-</sup>); it only becomes important with stronger ligands, at rather high  $\alpha_{\mathbf{X}}$ values (for instance, in the case of SCN<sup>--</sup> an error of 20% in  $K_w$  causes an error of 8% in  $K_f$  when  $\alpha_x =$ 10, but only 2% when  $\alpha_{\rm X}$  = 3). The effect of reasonable, indicative errors in the other parameters is shown in Fig. 2, together with the K<sub>f</sub> values obtained in a titration of  $(M1)OH_2$  with Cl<sup>--</sup>, in NaNO<sub>3</sub> solution. The behaviour one observes at low  $\alpha_x$  is particularly interesting, since the deviations must increase just in these cases if an appreciable systematic error occurs. That could supply a critical test for the reliability of the results. The  $K_f$  quoted in Fig. 2, for instance, cannot be affected by appreciable errors. It is significant that the best  $K_{\mathbf{D}}$  value to use, to obtain such results, is exactly that of the titrations with NaOH.

With stronger ligands, the errors qualitatively propagate in the same way, but not so favourably. For SCN<sup>-</sup> it is quite impossible to diagnose a systematic deviation by inspection of a  $K_f$  graph as in Fig. 2. The errors are critically dependent on the slightest parameter variation up to  $C_X \cong C_M$ , whereas they become constant in every case at slightly higher  $C_X$ . However, we believe that the  $K_f$  uncertainty

<sup>\*</sup>As a matter of fact, one also accounts for  $K_D$ ; *i.e.*, one calculates  $[MOH_2]$ , together with [MOII] and  $[M_2OH]$ , resolving the equations  $[MOH] + [OH^-] + [M_2OH] = C_b + [H^+]$ ,  $[M_2OH] = [MOH] [MOH_2] K_D^{-1}$ ,  $[MOH_2] = [MOH] [H^+] K_a^{-1}$ , where  $K_a$ ,  $K_D$ ,  $C_b$  and  $[H^+]$  are known. The [MX] value is then calculated ( $[MX] = C_M - [MOH_2] - [MOH] - 2[M_2OH]$ ), and the [X] value is calculated as  $[X] = C_X - [MX]$ . The errors decrease when  $[MOH_2]$  decreases and [X] increases.

does not exceed  $\pm 10\%$ , on the grounds of repeated tests.

The occurrence of some  $M_2X$  dimers in the reactins involving the halides and, in particular, SCN<sup>-</sup>, appeared very probable, considering the similar dimer formation with OH. A dimerization reaction does not invalidate the K<sub>f</sub> values one calculates at sufficiently high  $\alpha_X$  values, where the dimers must disappear, but the deviations can be very high if  $\alpha_{\rm X}$  < 1. As a first test for dimerization, one may check several, tentative values of the dimerization constant,  $K_{DX} = [M_2X] [MX]^{-1} [MOH_2]^{-1}$ , up to reaching a better  $K_f$  constancy (a slight improvement in the 0.7–1.1 range of  $\alpha_X$ , was only observed for the reaction between (M1)OH<sub>2</sub> and SCN<sup>-</sup>, using  $K_{DX}$  from about 10<sup>2</sup> to 10<sup>3</sup>). However, this is not reliable proof for dimerization since, at low  $\alpha_{\mathbf{X}}$ , fictitious improvements may arise from casual compensation of errors. Another method is to be used, which allows to evidence a dimerization and to reliably calculate  $K_{DX}$  provided rather strong ligands are in cause. The first amounts of X one adds must react, quantitatively, with the exceeding MOH<sub>2</sub>, so as to give, if M<sub>2</sub>X is also formed, higher p[H] than one expects even assuming an infinite K<sub>f</sub> value. This was always verified when titrating with SCN<sup>-</sup>. Physically inconsistent, negative K<sub>f</sub> are calculated in correspondence if, as in the usual calculations, the [X] value is equated to the algebraic sum S =  $C_X - C_M + [MOH] + [MOH_2] + 2[M_2OH]$ , disregarding  $[M_2X]$  (this sum strictly corresponds to  $[X] - [M_2X]$ , and becomes negative). On the contrary, at sufficiently low  $\alpha_X$  one may equate the negative S to  $-[M_2X]$ , disregarding [X]. One may thus calculate [MX] (we say [MX] +  $2[M_2X] =$  $C_{M} - [MOH_{2}] - [MOH] - 2[M_{2}OH]).$ 

A constant value of the ratio  $-S/([MOH_2][MX])$ , *i.e.* of  $K_{DX}$ , is to be obtained if dimerization occurs.

The results of such calculations are shown in Fig. 3 for two titrations of  $(M1)OH_2$  with SCN<sup>-</sup> in NaClO<sub>4</sub> solution (the approximation S =  $-[M_2X]$  fails when  $\alpha_X$  approaches 0.9, instead of 1.0, because of the added NaOH amount). Similar results have been obtained for  $(M3)OH_2 + SCN^ (K_{DX} = 64 \pm 5 M^{-1})$  and  $(M2)OH_2 + SCN^ (K_{DX} \cong 50 M^{-1}$ : the latter is a rather uncertain value, since the reaction was slow and the equilibrium values of the p[H] were reached with some doubt). A weak dimerization,  $K_{DX} = 5 \pm 3$ , also seems to occur in the reaction between  $(M1)OH_2$  and I<sup>-</sup>. No dimerization was identified in any of the other cases.

#### Discussion

No literature data is available for  $K_D$  and  $K_{DX}$ ; a dimerization was only hypothesized in the reactions involving (M1)OH<sub>2</sub> and OH<sup>-</sup> [9], but no



Fig. 3. Values of the ratio  $-S/([MOH_2][MX])$  for two titrations of (M1)OH<sub>2</sub> with SCN<sup>-</sup> in NaClO<sub>4</sub> solutions, as a function of the titrated fraction  $\alpha_X$ .

attempt was made to obtain the corresponding constant.

The  $K_f$  values may be compared, in some cases, with literature data. For the reaction of  $(M2)OH_2$ and Cl<sup>-</sup>, a value of 1400  $M^{-1}$  (as compared with our 1200 ± 100) is obtained as a ratio between the specific anation rate (2.4 sec<sup>-1</sup>  $M^{-1}$ ) [10] and the specific aquation rate (1.7 × 10<sup>-3</sup> sec<sup>-1</sup>, by interpolation at I = 0.5) [13, 14]. Other authors report some  $K_f$  values for the reactions between (M2)OH<sub>2</sub> and halides, which strongly disagree with ours and among them [7, 15]. However, in ref. 15 the  $K_f$ s are calculated by a rather unreliable ratio of kinetic constants which do not refer to the same ionic strength and composition, whereas in ref. 7 some anation rate constants are used, which do not agree with the subsequent values obtained by Goddard and Basolo [10].

Hewkin and Poë relate some interchange constants,  $K_{XY}$ , for reactions  $MX + Y \rightleftharpoons MY + X$  of (M1) and (M2) complexes with halides and thiocyanate [7]. They agree, within at least 35%, with the corresponding values one can calculate from Table II. Their measurements were carried out by spectrophotometric methods, and some extinction coefficients were rather uncertain; furthermore, despite the ionic strength was always 0.5 *M*, their solutions were very different from time to time.

Other interchange constants may be calculated from kinetic data. It is well known that these equilibria follow a mechanism [14]

$$MX + H_2O + Y \underbrace{\frac{k'_X}{k_X}}_{k_X} MOH_2 + X + Y \underbrace{\frac{k_Y}{k'_Y}}_{k'_Y}$$

 $MY + X + H_2O$ 

so that  $K_{XY} = k'_X k_Y / k'_Y k_X$ . All four rate constants are available for the reactions of the (M2) complexes

and the halides [10, 13], but unfortunately only  $k'_{X}$  and  $k'_{Y}$  are given at I = 0.5 M [13], while  $k_{X}$ and  $k_{y}$  are given at I = 0.02 M [10]. However, if one assumes that the  $k_{\mathbf{Y}}/k_{\mathbf{X}}$  ratio does not change appreciably when changing the ionic strength, one calculates 1.3, 3.8 and 3.0 for K<sub>ClBr</sub>, K<sub>ClI</sub> and KBrI respectively, which acceptably agree with the corresponding values 1.6, 6.4 and 4.0 obtained from Table II. Quite suprisingly, our  $K_{XY}$  values 1.6, 6.4 and 4.0 are almost undistinguishable from the  $k'_X/k'_Y$  ratios (1.57, 6.25 and 3.97), as though the exchange equilibria occurred without involving MOH<sub>2</sub>. This stresses the fact that comparisons between equilibrium constants and kinetic data may provide, in some cases, a misleading idea of the reaction mechanisms.

Hewkin and Poë [7] have widely discussed the relative stabilities of the halide and the thiocyanate complexes (M1)X and (M2)X in terms of inductive and steric effects. The discussion may now be extended to include the (M3)X complexes (for which no literature data is available) and the protonic and dimerization equilibria. The Ka values increase in the rather unexpected order  $(M3)OH_2 > (M1)OH_2$ > (M2)OH<sub>2</sub>. The higher acidity of (M3)OH<sub>2</sub> is, probably, a consequence of: i) the lower inductive effect of the methyl groups (as compared with the ethyl groups of (M2)OH<sub>2</sub>); ii) the presence of the ternary nitrogen atoms alone, which usually are not so basic as the primary and secondary nitrogen atoms. The effective positive charge of the central Pd atom would be higher than in (M1)OH<sub>2</sub> and (M2)OH<sub>2</sub>. However, these effects cannot account for the greater acidity of (M1)OH<sub>2</sub> vs. (M2)OH<sub>2</sub>. As for  $(M1)OH_2$  one should consider, perhaps, additional contributions coming from tautomeric equilibria between O-bonded and N-bonded hydrogen, or from intramolecular hydrogen bond, which might favour the deprotonated species. However, further, hardly evaluable, effects must arise from the different solvation around the Pd-bonded water molecule, due to the hydrophobic action of the alkyl groups.

Another, rather unexpected, result is the relative stability sequence of the chlorocomplexes,  $(M3)Cl \ge (M2)Cl > (M1)Cl$ , which does not confirm

the evaluation of Hewkin and Poë, (M1)Cl > (M2)Cl, and which disagrees with the observed stability sequence of Br<sup>-</sup>, I<sup>-</sup>, SCN<sup>-</sup> and of the dimers. Once again these results could be related to the lower positive charge of the metal center in (M1)X, due to the presence of primary nitrogen atoms.

The steric effects become, clearly, the prevalent ones for more encumbering ligands, as well as in dimerization reactions.

### Acknowledgement

Support from CNR, Rome (A.G.) and from the Centro di Chimica Analitica Strumentale, CNR, Pisa (F.M.) is gratefully acknowledged.

## References

- 1 U. Belluco *et al.*, 'Organometallic and Coordination Chemistry of Platinum', Academic Press, London and New York, 1974.
- 2 A. W. Thomas and T. H. Witehead, J. Phys. Chem., 35, 27 (1931).
- 3 J. Bjerrum, 'Metal Ammine Formation in Aqueous Solution', P. Haase, Copenhagen, 1941.
- 4 H. M. Irving, M. G. Miles and L. D. Pettit, Anal. Chim. Acta, 38, 475 (1967).
- 5 H. S. Harned and B. B. Owen, 'The Physical Chemistry of Electrolytic Solutions', Reinholds, New York, 1950, 2nd ed., Tables 15-2-1A and 12-3-1A.
- 6 R. A. Robinson and R. H. Stokes, 'Electrolyte Solutions', Butterworths, London, 1970, 2nd ed. (revised). Table 8.18.
- 7 D. J. Hewkin and A. J. Poë, J. Chem. Soc. (A), 1884 (1967).
- 8 Pao-Kuo Feng Chin and F. R. Hartley, Inorg. Chem., 15, 982 (1976).
- 9 M. C. Lim and R. Bruce Martin, J. Inorg. Nucl. Chem., 38, 1911 (1976).
- 10 J. B. Goddard and F. Basolo, Inorg. Chem., 7, 936 (1968).
- 11 R. Gran, Acta Chem. Scand., 1, 559 (1950).
- 12 L. Rasmussen and C. K. Jørgensen, Inorg. Chim. Acta, 3, 543 (1969).
- 13 R. Roulet and H. B. Gray, *Inorg. Chem.*, 11, 2101 (1972).
- 14 W. H. Baddley and F. Basolo, J. Am. Chem. Soc., 88, 2944 (1966).
- 15 L. A. P. Kane-Maguire and G. Thomas, J. Chem. Soc. Dalton, 1890 (1975).